Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 134
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Protein Sci ; 33(4): e4937, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38501488

RESUMO

Cellulosomes are intricate cellulose-degrading multi-enzymatic complexes produced by anaerobic bacteria, which are valuable for bioenergy development and biotechnology. Cellulosome assembly relies on the selective interaction between cohesin modules in structural scaffolding proteins (scaffoldins) and dockerin modules in enzymes. Although the number of tandem cohesins in the scaffoldins is believed to determine the complexity of the cellulosomes, tandem dockerins also exist, albeit very rare, in some cellulosomal components whose assembly and functional roles are currently unclear. In this study, we characterized the structure and mode of assembly of a tandem bimodular double-dockerin, which is connected to a putative S8 protease in the cellulosome-producing bacterium, Clostridium thermocellum. Crystal and NMR structures of the double-dockerin revealed two typical type I dockerin folds with significant interactions between them. Interaction analysis by isothermal titration calorimetry and NMR titration experiments revealed that the double-dockerin displays a preference for binding to the cell-wall anchoring scaffoldin ScaD through the first dockerin with a canonical dual-binding mode, while the second dockerin module was unable to bind to any of the tested cohesins. Surprisingly, the double-dockerin showed a much higher affinity to a cohesin from the CipC scaffoldin of Clostridium cellulolyticum than to the resident cohesins from C. thermocellum. These results contribute valuable insights into the structure and assembly of the double-dockerin module, and provide the basis for further functional studies on multiple-dockerin modules and cellulosomal proteases, thus highlighting the complexity and diversity of cellulosomal components.


Assuntos
Clostridium thermocellum , 60634 , Clostridium thermocellum/química , Proteínas de Ciclo Celular/química , Proteínas Cromossômicas não Histona/química , Complexos Multienzimáticos , Proteínas de Bactérias/química
2.
J Biol Chem ; 300(2): 105635, 2024 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-38199576

RESUMO

Microbial epoxide hydrolases, cis-epoxysuccinate hydrolases (CESHs), have been utilized for commercial production of enantiomerically pure L(+)- and D(-)-tartaric acids for decades. However, the stereo-catalytic mechanism of CESH producing L(+)-tartaric acid (CESH[L]) remains unclear. Herein, the crystal structures of two CESH[L]s in ligand-free, product-complexed, and catalytic intermediate forms were determined. These structures revealed the unique specific binding mode for the mirror-symmetric substrate, an active catalytic triad consisting of Asp-His-Glu, and an arginine providing a proton to the oxirane oxygen to facilitate the epoxide ring-opening reaction, which has been pursued for decades. These results provide the structural basis for the rational engineering of these industrial biocatalysts.


Assuntos
Biocatálise , Epóxido Hidrolases , Hidrolases , Epóxido Hidrolases/metabolismo , Hidrolases/química , Hidrolases/genética , Hidrolases/metabolismo , Tartaratos/metabolismo , Modelos Moleculares , Estrutura Terciária de Proteína , Estrutura Quaternária de Proteína
3.
Nat Commun ; 14(1): 6455, 2023 10 13.
Artigo em Inglês | MEDLINE | ID: mdl-37833284

RESUMO

Bacterial σI factors of the σ70-family are widespread in Bacilli and Clostridia and are involved in the heat shock response, iron metabolism, virulence, and carbohydrate sensing. A multiplicity of σI paralogues in some cellulolytic bacteria have been shown to be responsible for the regulation of the cellulosome, a multienzyme complex that mediates efficient cellulose degradation. Here, we report two structures at 3.0 Å and 3.3 Å of two transcription open complexes formed by two σI factors, SigI1 and SigI6, respectively, from the thermophilic, cellulolytic bacterium, Clostridium thermocellum. These structures reveal a unique, hitherto-unknown recognition mode of bacterial transcriptional promoters, both with respect to domain organization and binding to promoter DNA. The key characteristics that determine the specificities of the σI paralogues were further revealed by comparison of the two structures. Consequently, the σI factors represent a distinct set of the σ70-family σ factors, thus highlighting the diversity of bacterial transcription.


Assuntos
Proteínas de Bactérias , Clostridium thermocellum , Proteínas de Bactérias/metabolismo , Clostridium/genética , Regiões Promotoras Genéticas , Bactérias/genética , Fator sigma/metabolismo
4.
Int J Biol Macromol ; 253(Pt 1): 126649, 2023 Dec 31.
Artigo em Inglês | MEDLINE | ID: mdl-37666405

RESUMO

There is an increasing interest in using S-glycosylation as a replacement for the more commonly occurring O-glycosylation, aiming to enhance the resistance of glycans against chemical hydrolysis and enzymatic degradation. However, previous studies have demonstrated that these two types of glycosylation exert distinct effects on protein properties and functions. In order to elucidate the structural basis behind the observed differences, we conducted a systematic and comparative analysis of 6 differently glycosylated forms of a model glycoprotein, CBM, using NMR spectroscopy and molecular dynamic simulations. Our findings revealed that the different stabilizing effects of S- and O-glycosylation could be attributed to altered hydrogen-bonding capability between the glycan and the polypeptide chain, and their diverse impacts on binding affinity could be elucidated by examining the interactions and motion dynamics of glycans in substrate-bound states. Overall, this study underscores the pivotal role of the glycosidic linkage in shaping the function of glycosylation and advises caution when switching glycosylation types in protein glycoengineering.


Assuntos
Glicoproteínas , Polissacarídeos , Glicosilação , Glicoproteínas/química , Polissacarídeos/metabolismo , Peptídeos/química , Espectroscopia de Ressonância Magnética
5.
Molecules ; 28(15)2023 Aug 03.
Artigo em Inglês | MEDLINE | ID: mdl-37570818

RESUMO

Enzymes are essential catalysts for various chemical reactions in biological systems and often rely on metal ions or cofactors to stabilize their structure or perform functions. Improving enzyme performance has always been an important direction of protein engineering. In recent years, various artificial small molecules have been successfully used in enzyme engineering. The types of enzymatic reactions and metabolic pathways in cells can be expanded by the incorporation of these artificial small molecules either as cofactors or as building blocks of proteins and nucleic acids, which greatly promotes the development and application of biotechnology. In this review, we summarized research on artificial small molecules including biological metal cluster mimics, coenzyme analogs (mNADs), designer cofactors, non-natural nucleotides (XNAs), and non-natural amino acids (nnAAs), focusing on their design, synthesis, and applications as well as the current challenges in synthetic biology.


Assuntos
Engenharia de Proteínas , Biologia Sintética , Biotecnologia , Proteínas , Aminoácidos
6.
Int J Biol Macromol ; 250: 126226, 2023 Oct 01.
Artigo em Inglês | MEDLINE | ID: mdl-37558019

RESUMO

The thermophilic bacterium Clostridium thermocellum efficiently degrades polysaccharides into oligosaccharides. The metabolism of ß-1,4-linked cello-oligosaccharides is initiated by three enzymes, i.e., the cellodextrin phosphorylase (Cdp), the cellobiose phosphorylase (Cbp), and the ß-glucosidase A (BglA), in C. thermocellum. In comparison, how the oligosaccharides containing other kinds of linkage are utilized is rarely understood. In this study, we found that BglA could hydrolyze the ß-1,3-disaccharide laminaribiose with much higher activity than that against the ß-1,4-disaccharide cellobiose. The structural basis of the substrate specificity was analyzed by crystal structure determination and molecular docking. Genetic deletions of BglA and Cbp, respectively, and enzymatic analysis of cell extracts demonstrated that BglA is the key enzyme responsible for laminaribiose metabolism. Furthermore, the deletion of BglA can suppress the expression of Cbp and the deletion of Cbp can up-regulate the expression of BglA, indicating that BglA and Cbp have cross-regulation and BglA is also critical for cellobiose metabolism. These insights pave the way for both a fundamental understanding of metabolism and regulation in C. thermocellum and emphasize the importance of the degradation and utilization of polysaccharides containing ß-1,3-linked glycosidic bonds in lignocellulose biorefinery.

7.
Sci Adv ; 9(27): eadg4846, 2023 07 07.
Artigo em Inglês | MEDLINE | ID: mdl-37418529

RESUMO

Autoproteolysis has been discovered to play key roles in various biological processes, but functional autoproteolysis has been rarely reported for transmembrane signaling in prokaryotes. In this study, an autoproteolytic effect was discovered in the conserved periplasmic domain of anti-σ factor RsgIs from Clostridium thermocellum, which was found to transmit extracellular polysaccharide-sensing signals into cells for regulation of the cellulosome system, a polysaccharide-degrading multienzyme complex. Crystal and NMR structures of periplasmic domains from three RsgIs demonstrated that they are different from all known proteins that undergo autoproteolysis. The RsgI-based autocleavage site was located at a conserved Asn-Pro motif between the ß1 and ß2 strands in the periplasmic domain. This cleavage was demonstrated to be essential for subsequent regulated intramembrane proteolysis to activate the cognate SigI, in a manner similar to that of autoproteolysis-dependent activation of eukaryotic adhesion G protein-coupled receptors. These results indicate the presence of a unique prevalent type of autoproteolytic phenomenon in bacteria for signal transduction.


Assuntos
Clostridium thermocellum , Fator sigma , Fator sigma/química , Fator sigma/metabolismo , Transdução de Sinais , Clostridium thermocellum/química , Clostridium thermocellum/metabolismo , Receptores Acoplados a Proteínas G/metabolismo , Proteínas de Bactérias/metabolismo
8.
Carbohydr Polym ; 318: 121117, 2023 Oct 15.
Artigo em Inglês | MEDLINE | ID: mdl-37479453

RESUMO

Funoran, agarose and porphyran all belong to agaran, and share the similar skeleton. Although the glycoside hydrolase for agarose and porphyran, i.e. agarase and porphyranase, have been extensively studied, the enzyme hydrolyzing funoran has not been reported hitherto. The crystal structure of a previously characterized GH86 ß-agarase Aga86A_Wa showed a large cavity at subsite -1, which implied its ability to accommodate sulfate ester group. By using glycomics and NMR analysis, the activity of Aga86A_Wa on the characteristic structure of funoran was validated, which signified the first discovery of funoran hydrolase, i.e. funoranase. Aga86A_Wa hydrolyzed the ß-1,4 glycosidic bond between ß-d-galactopyranose-6-sulfate (G6S) and 3,6-anhydro-α-l-galactopyranose (LA) unit of funoran, and released disaccharide LA-G6S as the predominant end product. Considering the hydrolysis pattern, we proposed to name the activity represented by Aga86A_Wa on funoran as "ß-funoranase" and suggested to assign it an EC number.


Assuntos
Galactose , Polissacarídeos , Sefarose , Glicosídeo Hidrolases/química , Sulfatos
9.
J Environ Manage ; 342: 118281, 2023 Sep 15.
Artigo em Inglês | MEDLINE | ID: mdl-37290309

RESUMO

The production of lactic acid (LA) from agricultural wastes attracts great attention because of the sustainability and abundance of lignocellulosic feedstocks, as well as the increasing demand for biodegradable polylactic acid. In this study, we isolated a thermophilic strain Geobacillus stearothermophilus 2H-3 for use in robust production of L-(+)LA under the optimal conditions of 60 °C, pH 6.5, which were consistent with the whole-cell-based consolidated bio-saccharification (CBS) process. Sugar-rich CBS hydrolysates derived from various agricultural wastes, including corn stover, corncob residue, and wheat straw, were used as the carbon sources for 2H-3 fermentation by directly inoculating 2H-3 cells into the CBS system, without intermediate sterilization, nutrient supplementation, or adjustment of fermentation conditions. Thus, we successfully combined two whole-cell-based steps into a one-pot successive fermentation process to efficiently produce LA with high optical purity (99.5%), titer (51.36 g/L), and yield (0.74 g/gbiomass). This study provides a promising strategy for LA production from lignocellulose through CBS and 2H-3 fermentation integration.


Assuntos
Ácido Láctico , Lignina , Lignina/química , Fermentação , Biomassa
10.
Toxins (Basel) ; 15(5)2023 04 23.
Artigo em Inglês | MEDLINE | ID: mdl-37235341

RESUMO

The alternative σ factor TcdR controls the synthesis of two major enterotoxins: TcdA and TcdB in Clostridioides difficile. Four potential TcdR-dependent promoters in the pathogenicity locus of C. difficile showed different activities. In this study, we constructed a heterologous system in Bacillus subtilis to investigate the molecular basis of TcdR-dependent promoter activity. The promoters of the two major enterotoxins showed strong TcdR-dependent activity, while the two putative TcdR-dependent promoters in the upstream region of the tcdR gene did not show detectable activity, suggesting that the autoregulation of TcdR may need other unknown factors involved. Mutation analysis indicated that the divergent -10 region is the key determinant for different activities of the TcdR-dependent promoters. Analysis of the TcdR model predicted by AlphaFold2 suggested that TcdR should be classified into group 4, i.e., extracytoplasmic function, σ70 factors. The results of this study provide the molecular basis of the TcdR-dependent promoter recognition for toxin production. This study also suggests the feasibility of the heterologous system in analyzing σ factor functions and possibly in drug development targeting these factors.


Assuntos
Toxinas Bacterianas , Clostridioides difficile , Toxinas Bacterianas/genética , Clostridioides/metabolismo , Fator sigma/genética , Proteínas de Bactérias/metabolismo , Regulação Bacteriana da Expressão Gênica , Enterotoxinas/genética
11.
Carbohydr Polym ; 306: 120594, 2023 Apr 15.
Artigo em Inglês | MEDLINE | ID: mdl-36746585

RESUMO

Agarans are sulfated galactans extracted from red algae with high structural complexity, of which natural methylation often occurs on the O-6 position of its ß-d-galactopyranose units. Although many agaran degrading enzymes, including agarases and porphyranases, have been characterized, little attention has been paid to the tolerance of methyl groups at cleavage subsites. In this study, the structure of GH86 ß-agarase Aga86A_Wa from Wenyingzhuangia aestuarii was determined by X-ray crystallography and investigated from a structural biology perspective. The structure indicated that an accommodation pocket formed by F367, Y280, and Q326 at subsite -1 contributes to the methyl-galactose tolerance of Aga86A_Wa. Furthermore, we found that similar accommodation pockets were present in the structures of two other GH86 enzymes BuGH86 from Bacteroides uniformis and BpGH86A from Phocaeicola plebeius, and their previously undisclosed methyl-galactose tolerance was verified, validating the function of the pockets. Phylogenetic analysis, structural modeling, and hydrolysis product characterization suggested that the methyl-galactose accommodation capacity at subsite -1 was prevalent in GH86 members. These findings achieve a better understanding of the function and mechanism of GH86 agaran degrading enzymes, and will facilitate the precise preparation of agaran oligosaccharides by employing defined tools.


Assuntos
Galactanos , Galactose , Filogenia , Galactanos/química , Glicosídeo Hidrolases/genética , Glicosídeo Hidrolases/química
12.
Molecules ; 28(3)2023 Feb 01.
Artigo em Inglês | MEDLINE | ID: mdl-36771068

RESUMO

Hydrogen with high energy content is considered to be a promising alternative clean energy source. Biohydrogen production through microbes provides a renewable and immense hydrogen supply by utilizing raw materials such as inexhaustible natural sunlight, water, and even organic waste, which is supposed to solve the two problems of "energy supply and environment protection" at the same time. Hydrogenases and nitrogenases are two classes of key enzymes involved in biohydrogen production and can be applied under different biological conditions. Both the research on enzymatic catalytic mechanisms and the innovations of enzymatic techniques are important and necessary for the application of biohydrogen production. In this review, we introduce the enzymatic structures related to biohydrogen production, summarize recent enzymatic and genetic engineering works to enhance hydrogen production, and describe the chemical efforts of novel synthetic artificial enzymes inspired by the two biocatalysts. Continual studies on the two types of enzymes in the future will further improve the efficiency of biohydrogen production and contribute to the economic feasibility of biohydrogen as an energy source.


Assuntos
Hidrogenase , Nitrogenase , Nitrogenase/metabolismo , Fermentação , Biocombustíveis , Hidrogênio/análise
13.
Angew Chem Int Ed Engl ; 62(13): e202217678, 2023 03 20.
Artigo em Inglês | MEDLINE | ID: mdl-36660956

RESUMO

Applications of the peroxidase activity of cytochrome P450 enzymes in synthetic chemistry remain largely unexplored. We present herein a protein engineering strategy to increase cytochrome P450BM3 peroxidase activity for the direct nitration of aromatic compounds and terminal aryl-substituted olefins in the presence of a dual-functional small molecule (DFSM). Site-directed mutations of key active-site residues allowed the efficient regulation of steric effects to limit substrate access and, thus, a significant decrease in monooxygenation activity and increase in peroxidase activity. Nitration of several phenol and aniline compounds also yielded ortho- and para-nitration products with moderate-to-high total turnover numbers. Besides direct aromatic nitration by P450 variants using nitrite as a nitrating agent, we also demonstrated the use of the DFSM-facilitated P450 peroxidase system for the nitration of the vinyl group of styrene and its derivatives.


Assuntos
Sistema Enzimático do Citocromo P-450 , Hidrocarbonetos , Sistema Enzimático do Citocromo P-450/metabolismo , Compostos Orgânicos , Fenóis/química , Peroxidases
14.
Angew Chem Int Ed Engl ; 62(4): e202215088, 2023 01 23.
Artigo em Inglês | MEDLINE | ID: mdl-36417593

RESUMO

It is a great challenge to optionally access diverse hydroxylation products from a given substrate bearing multiple reaction sites of sp3 and sp2 C-H bonds. Herein, we report the highly selective divergent hydroxylation of alkylbenzenes by an engineered P450 peroxygenase driven by a dual-functional small molecule (DFSM). Using combinations of various P450BM3 variants with DFSMs enabled access to more than half of all possible hydroxylated products from each substrate with excellent regioselectivity (up to >99 %), enantioselectivity (up to >99 % ee), and high total turnover numbers (up to 80963). Crystal structure analysis, molecular dynamic simulations, and theoretical calculations revealed that synergistic effects between exogenous DFSMs and the protein environment controlled regio- and enantioselectivity. This work has implications for exogenous-molecule-modulated enzymatic regiodivergent and enantioselective hydroxylation with potential applications in synthetic chemistry.


Assuntos
Simulação de Dinâmica Molecular , Engenharia de Proteínas , Hidroxilação , Estereoisomerismo , Domínio Catalítico , Especificidade por Substrato
15.
Microb Cell Fact ; 21(1): 208, 2022 Oct 10.
Artigo em Inglês | MEDLINE | ID: mdl-36217200

RESUMO

BACKGROUND: Glucoside natural products have been showing great medicinal values and potentials. However, the production of glucosides by plant extraction, chemical synthesis, and traditional biotransformation is insufficient to meet the fast-growing pharmaceutical demands. Microbial synthetic biology offers promising strategies for synthesis and diversification of plant glycosides. RESULTS: In this study, the two efficient UDP-glucosyltransferases (UGTs) (UGT85A1 and RrUGT3) of plant origin, that are capable of recognizing phenolic aglycons, are characterized in vitro. The two UGTs show complementary regioselectivity towards the alcoholic and phenolic hydroxyl groups on phenolic substrates. By combining a developed alkylphenol bio-oxidation system and these UGTs, twenty-four phenolic glucosides are enzymatically synthesized from readily accessible alkylphenol substrates. Based on the bio-oxidation and glycosylation systems, a number of microbial cell factories are constructed and applied to biotransformation, giving rise to a variety of plant and plant-like O-glucosides. Remarkably, several unnatural O-glucosides prepared by the two UGTs demonstrate better prolyl endopeptidase inhibitory and/or anti-inflammatory activities than those of the clinically used glucosidic drugs including gastrodin, salidroside and helicid. Furthermore, the two UGTs are also able to catalyze the formation of N- and S-glucosidic bonds to produce N- and S-glucosides. CONCLUSIONS: Two highly efficient UGTs, UGT85A1 and RrUGT3, with distinct regioselectivity were characterized in this study. A group of plant and plant-like glucosides were efficiently synthesized by cell-based biotransformation using a developed alkylphenol bio-oxidation system and these two UGTs. Many of the O-glucosides exhibited better PEP inhibitory or anti-inflammatory activities than plant-origin glucoside drugs, showing significant potentials for new glucosidic drug development.


Assuntos
Produtos Biológicos , Glucosiltransferases , Glucosídeos/metabolismo , Glucosiltransferases/genética , Glucosiltransferases/metabolismo , Preparações Farmacêuticas , Prolil Oligopeptidases , Difosfato de Uridina
17.
Fitoterapia ; 163: 105338, 2022 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-36270560

RESUMO

Cysteine-rich peptides (CRPs) are stable molecules that contain multiple disulphide bonds. Various CRPs are found in plants and animals, representing potential compounds for drug development with diverse activities. Modification of CRPs, such as glycation, has attracted increased attention due to its special structural and functional properties. Hence, this study explored a CRP isolated from the Chinese herb Achyranthes bidentata Blume, which contains a glycation modification. Herein, a reverse phase high-performance liquid chromatography system with mobile phases was used to extract and purify the peptide. The eluted peptide was detected using high resolution mass spectrometry and structurally identified using high resolution mass spectrometry and nuclear magnetic resonance. The effect of the peptide on the viability of N-methyl-D-aspartic acid (NMDA)-induced HT22 cells was determined using a cell assay. Here, a new cysteine-rich glycation peptide, termed glycation-bidentatide (Gly-BTP), with three pairs of disulphide bonds and a glycation modification at the N-terminus linked to cysteine, was discovered. Cell bioactivity assay results suggested that Gly-BTP might be a potential therapeutic and provide a neuroprotective effect in NMDA-induced HT22 murine hippocampal neuronal cells. The discovery of Gly-BTP will promote the understanding of the role of CRPs in neuroprotection.


Assuntos
Achyranthes , Animais , Camundongos , Cisteína , N-Metilaspartato , Extratos Vegetais/química , Estrutura Molecular , Peptídeos , Dissulfetos
18.
mBio ; 13(5): e0147622, 2022 10 26.
Artigo em Inglês | MEDLINE | ID: mdl-36069444

RESUMO

Sugar uptake is of great significance in industrially relevant microorganisms. Clostridium thermocellum has extensive potential in lignocellulose biorefineries as an environmentally prominent, thermophilic, cellulolytic bacterium. The bacterium employs five putative ATP-binding cassette transporters which purportedly take up cellulose hydrolysates. Here, we first applied combined genetic manipulations and biophysical titration experiments to decipher the key glucose and cellodextrin transporters. In vivo gene inactivation of each transporter and in vitro calorimetric and nuclear magnetic resonance (NMR) titration of each putative sugar-binding protein with various saccharides supported the conclusion that only transporters A and B play the roles of glucose and cellodextrin transport, respectively. To gain insight into the structural mechanism of the transporter specificities, 11 crystal structures, both alone and in complex with appropriate saccharides, were solved for all 5 putative sugar-binding proteins, thus providing detailed specific interactions between the proteins and the corresponding saccharides. Considering the importance of transporter B as the major cellodextrin transporter, we further identified its cryptic, hitherto unknown ATPase-encoding gene as clo1313_2554, which is located outside the transporter B gene cluster. The crystal structure of the ATPase was solved, showing that it represents a typical nucleotide-binding domain of the ATP-binding cassette (ABC) transporter. Moreover, we determined that the inducing effect of cellobiose (G2) and cellulose on cellulosome production could be eliminated by deletion of transporter B genes, suggesting the coupling of sugar transport and regulation of cellulosome components. This study provides key basic information on the sugar uptake mechanism of C. thermocellum and will promote rational engineering of the bacterium for industrial application. IMPORTANCE Highly efficient sugar uptake is important to microbial cell factories, and sugar transporters are therefore of great interest in the study of industrially relevant microorganisms. Clostridium thermocellum is a lignocellulolytic bacterium known for its multienzyme complex, the cellulosome, which is of great potential value in lignocellulose biorefinery. In this study, we clarify the function and mechanism of substrate specificity of the five reported putative sugar transporters using genetic, biophysical, and structural methods. Intriguingly, the results showed that only one of them, transporter B, is the major cellodextrin transporter, whereas another, transporter A, represents the major glucose transporter. Considering the importance of transporter B, we further identified the missing ATPase gene of transporter B and revealed the correlation between transporter B and cellulosome production. Revealing the mechanism by which C. thermocellum utilizes cellodextrins will help pave the way for engineering the strain for industrial applications.


Assuntos
Clostridium thermocellum , Clostridium thermocellum/genética , Clostridium thermocellum/metabolismo , Celobiose/metabolismo , Celulose/metabolismo , Transportadores de Cassetes de Ligação de ATP/genética , Transportadores de Cassetes de Ligação de ATP/metabolismo , Glucose/metabolismo , Adenosina Trifosfatases/metabolismo , Proteínas Facilitadoras de Transporte de Glucose/metabolismo , Nucleotídeos/metabolismo , Trifosfato de Adenosina/metabolismo
19.
Int J Biol Macromol ; 207: 784-790, 2022 May 15.
Artigo em Inglês | MEDLINE | ID: mdl-35351552

RESUMO

Polysaccharides derived from lignocellulose are promising sustainable carbon sources. Cellulosome is a supramolecular machine integrating multi-function enzymes for effective lignocellulose bio-saccharification. However, how various non-cellulose components of lignocellulose affect the cellulosomal saccharification is hitherto unclear. This study first investigated the stability and oxygen sensitivity of the cellulosome from Clostridium thermocellum during long-term saccharification process. Then, the differential inhibitory effects of non-cellulose components, including lignin, xylan, and arabinoxylan, on the cellulosome-based saccharification were determined. The results showed that lignin played inhibitory roles by non-productively adsorbing extracellular proteins of C. thermocellum. Differently, arabinoxylan preferred to bind with the cellulosomal components. Almost no adsorption of cellulosomal proteins on solid xylan was detected. Instead, xylan in water-dissolved form interacted with the cellulosomal proteins, especially the key exoglucanase Cel48S, leading to the xylan inhibitory effect. Compared to xylan, xylooligosaccharides influenced the cellulosome activity slightly. Hence, this work demonstrates that the timely hydrolysis or removal of dissolved xylan is important for cellulosome-based lignocellulose saccharification.


Assuntos
Celulossomas , Clostridium thermocellum , Proteínas de Bactérias/metabolismo , Hidrólise , Lignina/metabolismo , Xilanos/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...